Autor - Paco Arce

A PROPÓSITO DE LOS ADAPTÓGENOS

Las plantas consideradas “adaptógenas”, un término usado para describir las hierbas que mejoran la energía física y capacidad atlética, aumentan la inmunidad contra resfriados y las infecciones y aumentan la capacidad sexual y la fertilidad.

Esta combinación de remedios y hierbas especiales de los diferentes saberes médicos de nuestro planeta producen una gran resistencia corporal contra el estrés y aumentan la fortaleza. Este producto es especialmente beneficioso para aquellas personas que son muy sensibles a la sobrecarga tensional, emocional e inmunodepresión.

CORDYCEPS (Cordyceps sinensis)

Cordyceps sinensis es un recurso natural que se ha utilizado ampliamente como un tónico y suplemento saludable por los pacientes mayores con mala salud, especialmente en China y otros países asiáticos. Posee diversas actividades biológicas gracias  a numerosos componentes bioactivos como cordicepina, polisacáridos, ergosterol, manitol y adenosina, entre otros. Se han demostrado diversas acciones farmacológicas de estos constituyentes fitoquímicos, como antitumoral, hepatoprotector, nefroprotector, efecto antiinflamatorio y antioxidante,  y con propiedades antiapoptóticas. Muchos de ellos son modificadores de la respuesta biológica y activan nuestro sistema inmunológico para una multitud de funciones defensivas. Sus efectos inmunomoduladores están asociados con la actividad antitumoral de algunos componentes, como cordicepina, adenosina, exopolisacáridos, cordiglucanos, y saponinas de monosacáridos.

Para resumir, el efecto de C. sinensis puede ser causado por un solo ingrediente activo o por la acción combinada de muchos agentes activos que existen en el extracto (1).

 ASHWAGANDHA (Withania somnifera).

Ashwagandha se utiliza como remedio casero en la India, donde lo consideran como el mejor tónico para los ancianos y los niños, y como afrodisíaco por los jóvenes. Los datos científicos apoyan la conclusión de que Ashwagandha es un potente tónico regenerador (Rasayana del Ayurveda), debido a sus múltiples acciones.  Los componentes fito-químicos biológicamente activos de Withania somnifera incluyen alcaloides, lactonas esteroideas y saponinas. Son agentes adaptogé-nicos antiestrés, tienen acciones farmacológicas inmunomoduladoras, efectos antitumorales, son neuroprotectores y útiles en enfermedades neurodegenerativas como el Parkinson, Huntington, demencia senil y la enfermedad de Alzheimer, tienen efecto ansiolítico y mejoran los niveles de energía y la salud mitocondrial, son antiinflamatorios, antiartríticos y analgésicos, protegen contra las úlceras gástricas y otras enfermedades inducidas por el estrés, útiles en niños con déficit de memoria y en personas mayores con pérdida de memoria (2).

 

LÚPULO (Humulus lupulus)

El lúpulo, son los estróbilos, inflorescencias o “conos” resinosos de los individuos femeninos de las especies dioicas del Humulus lupulus L. (Fam. Cannabaceae. Los géneros Humulus L. y Cannabis L. son miembros de esta familia), y se utiliza en la actualidad principalmente por sus ácidos amargos y sus aceites volátiles aromáticos en la fabricación de cerveza. Además, las preparaciones de lúpulo se venden en tiendas de alimentos naturales y en las farmacias de Europa y EE.UU., por su efecto de tipo sedante, para el tratamiento de la ansiedad y el insomnio. Se supone que este efecto es debido a algunos ácidos amargos, como la humulona y la lupulona. El lúpulo mejora el tiempo total de sueño, la calidad  y la profundidad del sueño, y reduce el tiempo hasta quedar dormido. Más de mil fitoquímicos se han encontrado en el lúpulo, y se ha demostrado que contiene uno de los más potentes fito-estrógenos conocidos, la 8-prenylnaringenina, un flavonoide prenilado llamado vulgarmente hopeina (hops=lúpulo en inglés). Se ha visto que los extractos de lúpulo o sus compuestos tienen actividad antioxidante, antimicrobiana particularmente frente a bacterias Gram positivas, potencial actividad quimiopreventiva y citotóxica frente a algunos tipos de cancer, actividad antiinflamatoria por supresión de la transcripción del gen COX-2, y frente a algunos síntomas propios del climaterio, como los sofocos (3).

SCHIZANDRA (Schizandra chinensis)

 

Esta planta tiene muchas actividades biológicas incluyendo, simpaticomimética (estimulante), hepatoprotectora, antitóxica, anti-alergénica, antidepresiva, estimulante de la glucogénesis y efectos antioxidantes. Además, la schizandra es un tónico estimulante de la resistencia. Es un agente antifatiga, que posiblemente contribuye a acelerar los procesos de restauración dentro del cuerpo humano. Algunos de sus defensores dicen que cuanto mayor sea el grado de agotamiento, mayor es su efecto estimulante. La schizandra puede ser útil para la reversión de la depresión del sistema nervioso central, porque la depresión puede ser debida, en parte, al agotamiento adrenérgico tras el estrés psicogénico grave. Esta hierba también se está promoviendo por su efecto estimulante sobre el sistema nervioso sin ser excitatorio como la anfetamina o la cafeína. También puede desempeñar un papel en las enfermedades inflamatorias, mediante la inhibición de la cascada del ácido araquidónico schizandra protege el hígado y estimula el sistema inmune, dos papeles clave de un adaptógeno ideal (4).

 GUGGUL (Commiphora Mukul).

Es una de las más antiguas plantas ayurvédicas que fue descrita por primera vez hace cuatro mil años, y en los últimos 30 años el Ministerio de Ciencia y Tecnología de la India ha financiado un programa de investigación para estudiar sus propiedades. Guggul es la goma de resina seca obtenida de la corteza del árbol del guggul, que contiene una mezcla de diterpenos, esteroles, esteroides, ésteres y alcoholes superiores. Los componentes activos de la planta son las esteronas Guggul, específicamente los estereoisómeros, guggul esterona E y Z. Estos esteroles vegetales tienen un alto grado de bioactividad en humanos, y se ha demostrado que afectan a muchos procesos biológicos. Cuando se toma por vía oral, guggul es curativo de la obesidad, disfunción hepática, tumores internos, llagas y úlceras malignas, molestias urinarias, fístulas anales, gusanos intestinales, leucoderma, edemas y parálisis repentinas. También se considera un tónico cardíaco. Se ha comprobado en estudios recientes que no activa los receptores de esteroides y que está desprovisto de cualquier actividad estrogénica, antiestrogénica, o progestacional. Sin embargo, estas guggul esteronas puras, tienen una pronunciada actividad hipolipidémica, y se ha demostrado que tiene propiedades anticancerígenas y antiinflamatorias muy importantes (5).

RHODIOLA (Rhodiola rosea)

 

Esta planta es eficaz en el tratamiento de la depresión leve a moderada y como adaptógeno en momentos de disminución del rendimiento tales como la fatiga y sensación de debilidad. Su mecanismo de acción en la depresión se piensa que es a través de aumentar beta-endorfinas, triptófano y serotonina en el cerebro. Rosiridin es el ingrediente bioactivo de Rhodiola rosea, que inhibe las monoaminas oxidasas A y B , por lo que puede ser eficaz en la depresión y en la demencia senil. Los efectos farmacológicos del extracto de Rhodiola rosea descritos en los estudios son: adaptogénico y protege del estrés; neuro-cardio-hepatoprotector; antioxidante; estimulante del sistema nervioso central, con efectos sobre la función cognitiva como atención, memoria y aprendizaje; anti-fatiga; antidepresivo y ansiolítico; normalizador endocrino; y aumenta la esperanza de vida.

Útil para su uso como estimulante contra la fatiga para pacientes que han sufrido estados de astenia y personas sanas que mostraron astenia durante períodos de alto esfuerzo mental o después del trabajo físico intenso. También se puede aplicar en los casos de enfermedades mentales, neurosis, trastornos neurótico-nerviosos borderline y psicopatías. En la práctica psiquiátrica, extractos de Rhodiola rosea se indican para la corrección de los efectos secundarios neurológicos asociados con el tratamiento psicofarmacológico, y por la intensificación y la estabilización de las remisiones de pacientes con esquizofrenia de tipo asténico y apático-abúlico (6,7).

BRAHMI (Bacopa monieri)

 

Bacopa monnieri (Fam. Scrophulariaceae), también conocidos como Brahmi, es una reputada hierba ayurvédica indicada para mejorar la memoria, la cognición y la salud cerebral, reduciendo el estres, la ansiedad y la depresión. Estas afirmaciones tradicionales han sido apoyadas por muchos estudios in vitro e in vivo, realizados utilizando el extracto de la planta o sus fitoquímicos purificados. Los más importantes son unas saponinas llamadas ‘bacósidos’, especialmente el Bacósido A (una mezcla de cuatro saponinas triglycosídicas), que han sido considerados como los principales componentes bioactivos responsables de los efectos cognitivos de B. monnieri. Es necesario que los bacósidos sean metabolizados previamente para que puedan atravesar la barrera hematoencefálica y ejercer su efecto. Otras actividades farmacológicas mostradas por B. monnieri incluyen antiepiléptico, ansiolítico, antidepresivo, sedante, antioxidante y actividad anti-inflamatoria. Se han propuesto diversos mecanismos de acción para sus efectos cognitivos incluyendo la inhibición de la acetilcolinesterasa, la reducción del β-amiloide, neuroprotección antioxidante, la modulación de neurotransmisores (acetilcolina, 5-hidroxitriptamina y dopamina), activación de la acetilcolin transferasa y el aumento del flujo sanguíneo cerebral (8).

YATAMANSI (Nardostachys jatamansi)

 

Nardostachys jatamansi (Fam. Valerianaceae) es originaria de las regiones del Himalaya en la India. En Ayurveda, sus raices son usadas como tónico y antiespasmódico, para tratar la histeria, la epilepsia y las convulsiones. Sus decocciones son usadas en desórdenes neurológicos, insomnio y desórdenes del sistema cardiovascular. Sus principales compuestos bioactivos son los sesquiterpenos (ácido Jatamánsico y Jatamansona) y lignanos presentes en las raíces de esta planta junto con un éster terpenoide, Nardostachysina I. Hasta la fecha se han llevado a cabo muchas investigaciones para evaluar N. jatamansi en el tratamiento de diversos trastornos neurológicos y cardiovasculares en diversos modelos animales y se utiliza ampliamente en formulaciones ayurvédicas. Se ha informado de que poseen actividad antidepresiva, anticonvulsiva, antiarrítmica, y poseen propiedades antioxidantes. También mejora el aprendizaje y la memoria, e incrementa la actividad de las aminas biogénicas (9).

 

BIBLIOGRAFÍA:

 

1- Liu, Y., et al. (2015). The Chemical Constituents and Pharmacological Actions of Cordyceps sinensis. Evid Based Complement Alternat Med. Volume 2015, Article ID 575063, 12 pag.

2- Singh, N., et al. (2011). An overview on Ashwagandha: a rasayana (rejuvenator) of ayurveda. Afr J Tradit Complement Altern Med. 8(S):208-213.

3- Chadwick, L. R., et al. (2006). The pharmacognosy of Humulus lupulus L. (hops) with an emphasis on estrogenic properties. Phytomedicine. January ; 13(1-2): 119–131.

4-  Alok, S., et al. (2014). Herbal antioxidant in clinical practice: A review.  Asian Pac J Trop Biomed. 4(1): 78-84.

5- Shishodia, S., et al. (2008). The Guggul for Chronic Diseases: Ancient Medicine, Modern Targets. Anticancer Res. 28: 3647-3664.

6- Qureshi, N. A., Al-Bedah, A. M., (2013). Mood disorders and complementary and alternative medicine: a literature review. Neuropsychiatr Dis Treat. 9: 639-658.

7- Panossian, A., et al., (2010). Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine. 17(7): 481-493.

8- Ramasamy, S., et al., (2015). In Silico and In Vitro Analysis of Bacoside A Aglycones and Its Derivatives as the Constituents Responsible for the Cognitive Effects of Bacopa monnieri. Plos One. May 12; 10(5).

9- Rasheed, A. S., et al., (2010). Evaluation of toxicological and antioxidant potential of Nardostachys jatamansi in reversing haloperidol-induced catalepsy in rats. Int. J. Gen. Med. May 26;3: 127-136.

 

CÚRCUMA + BOSWELLIA + PIMIENTA NEGRA

CURCUMA LONGA

            Curcuma longa es una hierba de la medicina tradicional China con una larga historia de uso como tratamiento para las enfermedades inflamatorias en China y el sudeste asiático. La curcumina es un nutracéutico descubierto hace unos dos siglos por Vogel y Pelletier, científicos de la Universidad de Harvard, en los rizomas de Curcuma longa. La FDA (Food and Drug Administration) ha declarado la curcumina como un nutraceutico “generalmente considerado como seguro” (GRAS), ya que a pesar de que exhibe una amplia variedad de actividades farmacológicas, se ha demostrado que es bastante segura en humanos. Los estudios han demostrado la seguridad de la curcumina a dosis de hasta 12 g/día durante 3 meses (1).

            La curcumina (diferuloilmetano) es una molécula altamente pleiotrópica, que ya en 1949 se demostró que presentaba actividad antibacteriana. Desde entonces, se ha comprobado que este polifenol posee actividades anti-inflamatoria, hipoglucemiante, antioxidante, cicatrizante de heridas, además de las antimicrobianas. Extensos estudios preclínicos en las últimas tres décadas han indicado el potencial terapéutico de la curcumina contra una amplia gama de enfermedades humanas. Algunos estudios clínicos se han ocupado de la farmacocinética, seguridad y eficacia de este nutracéutico. Algunos efectos prometedores se han observado en pacientes con diversas enfermedades inflamatorias como el cáncer, la artritis, la enfermedad de Crohn, la colitis ulcerosa, la enfermedad del intestino irritable, la pancreatitis, la úlcera gástrica, el vitiligo, la psoriasis, enfermedades cardiovasculares como el síndrome coronario agudo y la aterosclerosis, la diabetes y sus consecuencias, como la nefropatía diabética o la microangiopatía diabética, la nefritis lúpica, etc. La curcumina ha demostrado también protección contra las afecciones hepáticas, la exposición crónica al arsénico y la intoxicación por alcohol (1,2).

            Se ha demostrado que la curcumina puede modular múltiples vías de señalización celular. Sus acciones pleiotrópicas en humanos emanan de su capacidad para modular la expresión de numerosas moléculas de señalización tales como citoquinas pro-inflamatorias, proteínas apoptóticas, el factor nuclear κB (NF-κB), la ciclooxigenasa-2 (COX-2), la lipooxigenasa-5 (5LOX), factor de respuesta de fase aguda (STAT3), la proteína C reactiva, la prostaglandina E2 (PGE2), el antígeno específico prostático (PSA), moléculas de adhesión, fosforilasa quinasa, factor de crecimiento transformante-β (TGF-β), etc. (2,3).

            Se han realizado muchos estudios en pacientes con enfermedad inflamatoria intestinal (EII) para evaluar el potencial de la curcumina como un anti-inflamatorio sin efectos secundarios significativos. Encontraron que los extractos de cúrcuma podrían beneficiar a los pacientes con EII, mediante la reducción del transporte inapropiado en las células epiteliales intestinales y aumentando la actividad promotora de los genes de citoquinas anti-inflamatorias como la interleukina-10 (IL-10). También se encontró que la curcumina disminuye significativamente la infiltración de neutrófilos y la secreción de TNF-α. Los estudios sugieren que el tratamiento oral con curcumina disminuye los daños del colon y se asocia con supresión de la activación de NF-κB en la mucosa colónica y reducción de las reacciones inflamatorias, de la peroxidación lipídica, y de la muerte celular apoptótica. La curcumina inhibió significativamente la quimiotaxis de linfocitos polimorfonucleares (PMN) así como la quimiotaxis de los neutrófilos humanos mediada por IL-8. Y puede inhibir la angiogénesis mediada por el factor de crecimiento del endotelio vascular (VEGF) en las células endoteliales microvasculares intestinales humanas. Por lo tanto la curcumina puede representar un nuevo agente terapéutico dirigido a la activación endotelial en la EII (2,3).

            Como suele ser habitual con los productos naturales, sólo unos pocos estudios clínicos han sido publicados con curcumina en pacientes con osteoartritis (OA), informando de un efecto positivo sobre la reducción del dolor y la rigidez, así como de una mejora de la función articular. La curcumina también se ha probado en pacientes que padecían artritis reumatoide (AR), comprobando que presentaba muy buena eficacia, además de no provocar ningún evento adverso. Muchos estudios con animales y células in vitro y en pacientes con AR, han elucidado los efectos biológicos y los mecanismos moleculares de la curcumina en el tratamiento de la AR. El tratamiento con curcumina activó caspasa-3 y -9, reguló al alza Bax y a la baja Bcl-2 y Bcl-xL, y degradó la poli (ADP-ribosa) polimerasa (PARP) en los fibroblastos sinoviales de manera dependiente de la dosis, y también la supresión de la COX-2 con la inhibición de la síntesis de  PGE2  (4,5).

            Aunque en humanos no existen datos farmacocinéticos exhaustivos, los estudios demuestran que después de la administración oral de la curcumina se observa una baja biodisponibilidad, debido principalmente a su mala absorción, su rápido metabolismo y su rápida eliminación sistémica. No presentaba toxicidad relacionada con tratamientos de hasta 8 g/día, pero el gran volumen de curcuma fue inaceptable para los pacientes. Los estudios demostraron que después de la administración oral de 1 g/kg de curcumina en ratas, más del 75% de la curcumina se excreta en las heces y la cantidad detectada en la orina fue insignificante. Por lo general, la concentración sérica de curcumina alcanzó el máximo de 1 a 2 horas después de su ingesta oral y después se redujo en 12 horas. En otro estudio sólo detectaron curcumina en el suero de aquellos sujetos que se trataron con 10 y 12 g/día. La curcumina se metaboliza en el hígado, a través de la glucuronidación y la sulfatación. Los metabolitos de la curcumina como glucurónidos parece que carecen de cualquier actividad farmacológica. La eliminación sistémica de la curcumina es otro factor que contribuye a su baja biodisponibilidad. Se ha explorado cómo aumentar la biodisponibilidad de la curcumina mediante adyuvantes que pueden bloquear el metabolismo de la curcumina (6).

PIPER NIGRUM

            La piperina es un importante alcaloide vegetal obtenido de Piper nigrum L. y Piper longum L., ampliamente utilizado como condimento, especialmente en la India. En el campo farmacéutico, se sabe que la piperina posee actividad anti-inflamatoria, actividad antipirética, antifúngica,  antidiarreica, antioxidante, antitiroidea, antimutagénica, antitumoral, antidepresiva, analgésica,  hepatoprotectora, antihipertensiva, etc., y además, la piperina está validada científicamente como el primer promotor de la biodisponibilidad del mundo. Puede haber dos posibles mecanismos mediante los cuales la piperina actúa como biopotenciador: uno, promoviendo la rápida absorción de fármacos y nutracéuticos mediante cambios en la permeabilidad de las células epiteliales gastrointestinales; y dos, inhibiendo las enzimas metabólicas intestinales y hepáticas que participan en la biotransformación de fármacos y nutracéuticos (7).

            La piperina reduce la tasa de metabolismo de la curcumina y aumenta su absorción intestinal al aumentar el tiempo de residencia, alterar la dinámica de lípidos de membrana, así como alterar la conformación de las enzimas en el intestino. Por lo tanto la piperina ha demostrado ser un posible potenciador para aumentar la biodisponibilidad de fármacos hidrófobos como la curcumina. La piperina también inhibe las enzimas UDP-glucuroniltransferasas que catalizan la glucuronidación de la curcumina en el intestino y el hígado. Se estudió la combinación de la curcumina con la piperina en ratas y en humanos, y los estudios  demostraron que la administración concomitante de la curcumina con piperina produjo un aumento en la biodisponibilidad de la curcumina del 150% en ratas y del 2000% en el hombre (8).

BOSWELLIA SERRATA

            Durante siglos, la Boswellia serrata se ha empleado tradicionalmente en la medicina popular para el tratamiento de diversas enfermedades inflamatorias tópicas y sistémicas. Los estudios en animales y ensayos clínicos piloto apoyan el potencial del extracto de  Boswelia serrata (BSE) para el tratamiento de una variedad de enfermedades inflamatorias como la enfermedad inflamatoria  intestinal, artritis reumatoide, osteoartritis y asma. Por otra parte, en 2002 la Agencia Europea del Medicamento ha clasificado al BSE como un “medicamento huérfano” para el tratamiento del edema cerebral peritumoral que acompaña al glioma. Se espera que la administración del BSE sea asociada con una mejor tolerabilidad que la de los anti-inflamatorios no esteroideos (AINE).

            Hasta hace poco, los efectos farmacológicos del BSE se atribuían principalmente a la supresión de la formación de leucotrienos a través de la inhibición de la enzima 5-lipoxigenasa (5-LO) por los ácidos boswéllicos, ácido 11-ceto-β-boswéllico (KBA), ácido acetil-11-ceto-β-boswéllico (AKBA) y ácido β-boswéllico (BA). Uno de los requisitos previos más importantes para obtener los efectos antiinflamatorios del BSE in vivo es tener suficiente absorción y biodisponibilidad de estos ingredientes activos. Sin embargo, después de la administración oral de la BSE, sólo se observaron concentraciones muy bajas de KBA y de AKBA en plasma, mientras que había niveles 100 veces mayores del AB. En estudios in vitro, se ha comprobado que AKBA es el inhibidor más eficaz de la activación de NF-κB, pero la absorción de AKBA es tan baja, que se cree que las actividades antiinflamatorias del BSE dependen de los otros ácidos boswéllicos. Actualmente, la inhibición de la catepsina G (CATG) y la prostaglandina E sintasa microsomal (mPGES)-1 por el AB es considerado el principal modo de acción de la BSE (9).

            Recientemente, se aisló del BSE el acetato de incensol, un diterpeno de tipo cembrano. Se encontró que el acetato de incensol tambien posee propiedades antiinflamatorias, atenuando la expresión de TNF-α, IL-1b, IL-6 y PGE2 en monocitos periféricos humanos, de una manera dependiente de la concentración. Además, el acetato de incensol inhibió la expresión del ARN mensajero (ARNm) de TNF-α e IL-1b, lo cual indica una actividad de este producto sobre la regulación de la expresión de los genes implicados en la inflamación.

            A la vista de las propiedades anti-inflamatorias del BSE, se han realizado estudios clínicos con pacientes afectados de EII, demostrandose una buena eficacia en la enferemedad de Crohn, la colitis ulcerosa y la colitis colagenosa, comparable a la de ciertos fármacos empleados en las EII, como la prednisolona, mesalazina y sulfasalazina.

            Los ácidos boswéllicos, podrían alcanzar concentraciones suficientemente altas en el lumen intestinal, y podrían actuar como inhibidores de la 5-LO, inhibiendo la síntesis de leucotrienos B4 (LTB4). Sin embargo, el papel de los leucotrienos en la EII esta siendo cuestionado, ya que aunque los leucotrienos están elevados en la mucosa intestinal de pacientes con EII, la inhibición de la síntesis de leucotrienos con inhibidores selectivos de la 5-LO no produce beneficio terapéutico.

            Por otra parte, hay un creciente reconocimiento de que la activación endotelial es un componente determinante de la respuesta inflamatoria en los pacientes con EII. Una consecuencia importante de la activación endotelial es el incremento de la expresión de glicoproteínas que regulan la adhesión de leucocitos a la superficie de las células endoteliales y por lo tanto regulan el reclutamiento de leucocitos en el tejido inflamado. En estudios con EII experimental, se encontraron dramáticamente reguladas al alza las moléculas de adhesión VCAM-1, ICAM-1 y P-selectina en las células endoteliales.

            Estudios in vitro sugieren que la activación de NF-κB es un paso crítico en la patogénesis de la EII, y este aumento de la actividad de NF-κB se observó en pacientes con la enfermedad de Crohn. La activación del NF-κB en la EII también se asoció con altos niveles de citoquinas pro-inflamatorias en los macrófagos, como la IL-1, IL-6 y TNF-α. Por otra parte, el BSE suprimió completamente la expresión de VCAM-1 e ICAM-1 inducida por TNF-α en las células endoteliales microvasculares humanas (10).  Se ha observado un aumento de la expresión de ICAM-1 en la mucosa intestinal de EII activamente inflamada, lo que estuvo en línea con los niveles séricos elevados de ICAM-1 y VCAM-1 en pacientes con EII activa. La ICAM-1 hace que los leucocitos se adhieran y migren más allá de la pared endotelial de los vasos. Estudios en modelos animales y un estudio de intervención humana han demostrado que el bloqueo de ICAM-1 inhibe la inflamación intestinal.

Del mismo modo, el bloqueo de NF-κB en modelos animales abolió la colitis experimental. Y también se observó una atenuación de los síntomas de EII asociados con una disminución en los leucocitos circulantes y adherentes. Por lo tanto, se puede concluir que la inhibición de la activación de los leucocitos y/o la regulación a la baja de la ICAM-1 puede representar un importante mecanismo de acción del BSE en el tratamiento de la EII en los seres humanos, donde el AKBA presenta la mayor actividad inhibidora.

            En la medicina ayurvédica tradicional de la India, el BSE se ha utilizado durante siglos para tratar enfermedades artríticas. Varios ensayos clínicos piloto han evaluado los efectos de la BSE en pacientes con artrosis, encontrando mejoras estadísticamente significativas en el dolor y la función física en comparación con placebo. Por otra parte, un estudio reciente con BSE enriquecido con 30% de AKBA, se encontró que inhibe la enzima degradante del cartílago metaloproteasa 3 (MMP-3) en el fluido sinovial de pacientes con OA. El BSE redujo el dolor y mejoró la función física de manera significativa en pacientes con OA, y puede mejorar la salud de las articulaciones mediante la reducción de la degradación enzimática de cartílago. En estudios con modelo animal de artritis, el BSE presentó efectos positivos, reduciendo el número total de leucocitos en el fluido sinovial y mejorando síntomas como la cojera o el dolor local.

            Los inhibidores de la CATG tienen potencial en el tratamiento de ciertos trastornos inflamatorios tales como asma, enfermedad pulmonar obstructiva crónica (EPOC), enfisema, lesión por reperfusión, psoriasis y artritis reumatoidea. Se ha observado que los ácidos boswéllicos suprimen potentemente la actividad de CATG de forma competitiva y reversible, ya que se unen potentemente al sitio activo del enzima, suprimiendo su actividad proteolítica.   Por otra parte, los ácidos boswélicos inhiben la quimioinvasión de neutrófilos activados mediada por CATG en humanos. Por último, la administración del BSE redujo significativamente la actividad CATG en sangre humana ex vivo versus placebo. En conclusión, CATG es un objetivo funcional y farmacológicamente relevante de los ácidos boswéllicos, y esta interferencia con la CATG podría explicar algunos de las actividades anti- inflamatorias de la BSE en la OA y la AR (9).

            Recientemente se ha encontrado que los ácidos boswéllicos suprimen la transformación de PGH2 a PGE2 mediada por la enzima inducible mPGES-1 en la membranas microsomales, de forma reversible e independiente de la concentración de sustrato. En particular, el BA (el mayor ácido boswéllico presente en BSE, y que alcanza mayor concentración en el plasma humano) fué asociado con la más potente supresión de PGE2 (11).

            Según estos hallazgos, se puede pensar que los efectos beneficiosos del BSE observados en modelos animales artríticos, así como en estudios clínicos de OA y AR, están relacionados con la interferencia con la síntesis de PGE2 debido a la inhibición directa de mPGES-1. Además, el BSE bloquea específicamente la síntesis de PGE2,  y por lo tanto no interfiere con la síntesis in vitro e in vivo de otros eicosanoides producidos por la COX que pueden tener importantes funciones fisiológicas (PGI2, tromboxano) o anti-inflamatorias (PGD2). Parece razonable sugerir que CATG y mPGES-1 son las principales dianas farmacológicas de los ácidos boswéllicos, especialmente del BA, y que el BSE puede representar un candidato prometedor para el tratamiento anti-inflamatorio de OA y RA, sin ejercer los graves efectos adversos asociados con los AINE y los corticosteroides.

REFERENCIAS

  

  1. GUPTA S. C. et al., (2013) Therapeutic Roles of Curcumin: Lessons Learned from Clinical Trials. The AAPS Journal,; Vol. 15, No. 1, January. 
  1. AGGARWAL B. B. Y HARIKUMAR K. B., (2009) Potential Therapeutic Effects of Curcumin, the Anti-inflammatory Agent, Against Neurodegenerative, Cardiovascular, Pulmonary, Metabolic, Autoimmune and Neoplastic Diseases. Int J Biochem Cell Biol.; 41(1): 40–59.
  1. B. B. AGGARWAL et al., (2013) Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. British Journal of Pharmacology; 169: 1672–1692.
  1. HENROTIN Y. et al., (2013) Curcumin: a new paradigm and therapeutic opportunity for the treatment of osteoarthritis: curcumin for osteoarthritis management. SpringerPlus; 2: 56.
  1. KUPTNIRATSAIKUL V. et al. (2014) Efficacy and safety of Curcuma domestica extracts compared with ibuprofen in patients with knee osteoarthritis: a multicenter study. Clinical Interventions in Aging; 9: 451-458.
  1. HE Y. et al. (2015) Curcumin, Inflammation, and Chronic Diseases: How Are They Linked? Molecules, 20: 9183-9213.
  1. SRINIVASAN K. (2007) Black Pepper and its Pungent Principle-Piperine: A Review of Diverse Physiological Effects. Critical Reviews in Food Science and Nutrition; 47: 735–748.
  1. SHOBA G. et al. (1998) Influence of Piperine on the pharmacokinetics of Curcumin in animals and human volunteers. Planta Medica; 64: 353-356.

  1. ABDEL-TAWAB M. (2011) Boswellia serrata An Overall Assessment of In Vitro, Preclinical, Pharmacokinetic and Clinical Data. Clin Pharmacokinet; 50 (6): 349-369.

  1. ROY S. et al., (2005) Human Genome Screen to Identify the Genetic Basis of the Anti-inflammatory Effects of Boswellia in Microvascular Endothelial Cells. DNA AND CELL BIOLOGY, Volume 24, (4): 244–255.

  1. SIEMONEIT U. (2011) Inhibition of microsomal prostaglandin E2 synthase-1 as a molecular basis for the anti-inflammatory actions of boswellic acids from frankincense. British Journal of Pharmacology; 162: 147–162.

LA CALCIFICACIÓN VASCULAR

El envejecimiento es un proceso fisiológico normal, que se ve acelerado por diversos factores anómalos, sobre los cuales podemos intervenir con una correcta nutrición ortomecular. En este sentido, el proceso de envejecimiento que afecta a las arterias (la arterioesclerosis progresa transformando unas arterias flexibles en la juventud en una especie de tubos rígidos como de uralita), depende principalmente del depósito de fosfato cálcico o hidroxiapatita en la matriz extracelular de la musculatura lisa arterial. La alta incidencia de la mortalidad cardiovascular, en parte es debida a la calcificación de las grandes arterias, incluida la aorta. Este proceso que afecta a la población normal, es particularmente agresivo en la población afectada de enfermedad renal crónica (1,2).

Actualmente, no hay terapia que revierta la calcificación arterial, y sólo hay tratamientos que pueden atenuar su progresión, basados en reducir determinados factores de riesgo como los niveles de calcio o fosfato en sangre, utilizando agentes quelantes. Un estudio reciente ha concluido que el magnesio puede ser más eficaz que estos agentes quelantes a la hora de frenar el avance de la calcificación arterial (3).

Diversos estudios científicos han comprobado que una carencia de magnesio provoca un incremento de la velocidad de depósito de fosfato cálcico en las arterias. Se pensó que el papel del magnesio para frenar la deposición de hidroxiapatita era pasivo y de tipo fisicoquímico, sin embargo, un estudio ha demostrado que la acción del magnesio es activo. Se ha visto que las células musculares lisas de la arteria aorta, cuando tienen altos nives de calcio y fosfato, y  carencia de magnesio sufren una alteración en la expresión de determinados genes y comienzan a comportarse como osteoblastos, es decir, como células generadoras de hueso, creando una trama extracelular de proteinas generadoras de hueso como osteocalcina y la BPM-2 (bone morphogenetic protein o proteina morfogenética osea), y que aceleran la deposición de fosfato cálcico (4,5).

Los nuevos hallazgos han demostrado que el magnesio tiene el potencial para contrarrestar los procesos moleculares asociados a la calcificación vascular y que el transportador de magnesio TRPM7 juega un papel decisivo. El magnesio regula negativamente la calcificación vascular y la diferenciación osteogénica de las células musculares lisas arteriales, mediante el incremento de la actividad del receptor TRPM7 e incrementando la expresión de proteinas anticalcificación, incluyendo osteopontina y BMP-7. (6)

1.- Noordzij, M., et al.: Progression of aortic calcification is associated with disorders of mineral metabolism and mortality in chronic dialysis patients. Nephrol Dial Transplant (2011) 26: 1662–1669.

2.- Disthabanchong, S., et al.: Vascular calcification in chronic kidney disease: Pathogenesis and clinical implication. World J Nephrol  (2012) 6; 1(2): 43-53.

3.-  De Schutter, T.M., et al.: Effect of a magnesium-based phosphate binder on medial calcification in a rat model of uremia. Kidney International (2013) 83, 1109–1117.

4.- Louvet, L., et al.: Magnesium prevents phosphate-induced calcification in human aortic vascular smooth muscle cells. Nephrol Dial Transplant (2013) 28: 869–878.

5.- Louvet, L., et al.: Characterisation of calcium  phosphate crystals on calcified human aortic vascular smooth muscle cells and potential role of  magnesium. PloSONE (2015) 10(1): e0115342.doi:10.1371/journal.pone.0115342.

6.- Montezano, A.C., et al.:  Vascular smooth muscle cell differentiation to an osteogenic phenotype involves TRPM7 modulation by magnesium. Hypertension (2010); 2: 453–462.

A PROPÓSITO DEL COLÁGENO

Aproximadamente, entre el 25 y el 35% de las proteínas del cuerpo son colágeno. Desde hace años se sabe que con el paso del tiempo perdemos colágeno y se ha identificado la intensidad de esta pérdida con una mayor velocidad de envejecimiento, con una mayor incidencia sobre la pérdida de cartílago en las articulaciones, y también sobre la pérdida de tersura de la piel.

El tratamiento tradicional se ha basado en preparados a base de cartílago de tiburón, colágeno e hidrolizados de colágeno, o tratamientos con glucosamina o condroitina, entre otros. Todos ellos han sido sometidos a exhaustivos estudios clínicos, que no han sido capaces de concluir si son eficaces o no, para incrementar la síntesis de colágeno.

Recientes estudios sobre nuestro metabolismo de los aminoácidos, han aportado luz a este problema, ya que se ha descubierto que a la lista de aminoácidos esenciales (los que no somos capaces de sintetizar y debemos tomar con la dieta) había que añadir algunos otros, debido a que no somos capaces de sintetizarlos en la cantidad que precisamos para cubrir nuestras necesidades de biosíntesis proteica.

Uno de estos aminoácidos es la glicina, del cual tenemos unas necesidades diarias de unos 15 ó 16 gramos, ya que participa en la síntesis de diferentes sustancias además del colágeno, como las purinas, el glutation, o la propia utilización de la glicina como neurotransmisor. Sin embargo, se ha visto que entre la síntesis endógena y el aporte de una nutrición estandar, estamos cubriendo tan sólo unos 6 gramos. Por tanto, tenemos un déficit de unos 10 gramos al día, que deberíamos aportar mediante suplementos (1, 2).

Precisamente, la glicina es un aminoácido muy importante para la síntesis de la molécula de colágeno, puesto que debido a su pequeño tamaño la permite adoptar la estructura en hélice alfa, y por esto, cada 3 posiciones de la cadena peptídica encontramos una glicina.

Otros dos aminoácidos importantes por su frecuente presencia en el colágeno, son lisina y prolina, los cuales una vez incorporados en la proteína, sufren una hidroxilación. La hidroxilisina y la hidroxiprolina establecen uniones por puentes de hidrógeno que estabilizan y consolidan la triple hélice del colágeno. Las enzimas hidroxilasas que catalizan estas transformaciones en la lisina y la prolina, tienen en su centro activo una molécula de hierro. Y la vitamina C actúa como cofactor necesario en la reacción de hidroxilación (3).

El magnesio es un elemento de reconocida importancia en la síntesis de proteínas. El silicio también es importante para estabilizar la triple hélice de colágeno mediante el establecimiento de enlaces con grupos hidroxilo de las fibras (4). De esta manera se consiguen unas fibras de colágeno más resistentes.

Con la intención de incrementar al máximo la síntesis de colágeno funcional, es decir, tanto la síntesis de la proteína como su posterior proceso de maduración, es importante un producto que destaque por la presencia de glicina a la dosis fisiológica máxima, como aminoácido clave para la síntesis de colágeno. Arginina, otro de los aminoácidos considerados no esenciales, pero que tras recientes investigaciones se ha comprobado que también es necesario un aporte nutricional (5), y que además sirve como precursor en la síntesis de prolina. También aporta lisina, que como hemos visto es, junto a la prolina, otro aminoácido de gran importancia para la síntesis del colágeno y su posterior maduración. Junto a estos tres aminoácidos, la fórmula se completa con vitamina C y hierro, necesarios para la hidroxilación de lisina y prolina, y silicio. Estos elementos de la fórmula ayudan a mejorar la maduración del colágeno hasta alcanzar la configuración funcional óptima. Y finalmente, el magnesio, un elemento que en la nutrición actual es de una escasez alarmante, y que es de notoria importancia en la síntesis de proteínas.

Referencias:

 

  • De Paz Lugo, P. (2006). Estimulación de la síntesis de colágeno: Posible tratamiento de enfermedades degenerativas mediante la dieta. Tesis doctoral. Universidad de Granada.
  • Meléndez-Hevia, E. et al., (2009). A weak link in metabolism: the metabolic capacity for glycine biosynthesis does not satisfy the need for collagen synthesis. Journal of Biosciences, vol. 34, pp. 853-872.
  • Kelly L. G. and Ronald T. R. (2010) Prolyl 4-hydroxylase. Crit Rev Biochem Mol Biol. April ; 45(2): 106–124.
  • Jugdaohsingh R. Silicon and bone health. (2007) J Nutr Health Aging ;11:99 –110.
  • Cheung, C.W., Cohen, N.S. & Raijman, L. (1989) Channeling of urea cycle intermediates in situ in permeabilized hepatocytes. J. Biol. Chem. 264, 4038–4044.

A PROPÓSITO DEL DHA

A pesar de que las autoridades sanitarias (según el REGLAMENTO (UE) Nº 432/2012) sólo aceptan que los omega 3 EPA y DHA (eicosapentaenoico y docosahexaenoico) contribuyen al funcionamiento normal del corazón, y además, que el DHA (pero no el EPA) contribuye a mantener el funcionamiento normal del cerebro y al mantenimiento de la visión en condiciones normales, podemos asegurar, apoyándonos en los miles de estudios publicados y en la opinión de muchos científicos, que complementar nuestra nutrición con suplementos de DHA nos va a ayudar a mejorar en todos los aspectos relacionados con nuestra salud (1).

De especial relevancia es el hecho de que cuando comienza a formarse el cerebro en un feto, ese tejido comienza a acumular DHA procedente de la madre y durante toda la vida mantenemos en el cerebro una gran cantidad de DHA (2,3). Un inadecuado suministro de DHA en estos momentos del desarrollo fetal, especialmente en el último trimestre de embarazo, acarreará nefastas consecuencias para la salud del bebé, especialmente a nivel de neurodesarrollo, como puede ser el caso de los niños nacidos prematuros si no reciben un adecuado suministro de DHA (4). Hay muchas evidencias científicas que relacionan los niveles de este ácido graso poliinsaturado con el correcto neurodesarrollo, el buen funcionamiento cerebral y un saludable neuroenvejecimiento. Se ha señalado relación de la baja ingesta de DHA con enfermedades y síndromes que afectan al cerebro (1), como el Alzheimer y las demencias, el parkinson, la esclerosis multiple, la epilepsia, los ictus, la depresión, el trastorno bipolar, la esquizofrenia, los trastornos por déficit de atención e hiperactividad, o el autismo. Sin embargo, los más escépticos no aceptan esto, debido a que no hay grandes estudios doble ciego controlados con placebo. Pero hay que pensar en la dificultad de realizar estos estudios por su elevado coste.

Actualmente se conoce la influencia del DHA en la regulación de la inflamación, que nuestras células ponen en marcha en su intento por recuperar la homeostasis que han perdido como consecuencia de alguno de los muchos procesos que pueden alterarla. Que los omega 3, y en especial DHA, tienen efecto antiinflamatorio, se conoce desde hace bastante tiempo, pero los mecanismos moleculares íntimos que conducen a este efecto, han comenzado a descubrirse hace poco más de una década. Ahora sabemos que el DHA se transforma mediante reacciones enzimáticas en moléculas de gran potencia llamadas docosanoides (5).

El docosanoide más documentado es la Neuroprotectina D1, abreviado NPD1 (6). Se ha comprobado que la NPD1 puede modular la respuesta inflamatoria en todas sus fases, disminuyendo la producción de moléculas proinflamatorias (prostaglandinas, leucotrienos, tromboxanos, etc.), modulando la activación de células defensivas (linfocitos, macrófagos, etc.) y mediando la expresión de algunos genes, interactuando con determinados factores nucleares. Un ejemplo es el bloqueo de la apoptosis de células cerebrales tras el proceso de isquemia/reperfusión que acontece después de un ictus, en el cual la NPD1 actúa bloqueando la expresión de genes pro-apoptosis y promoviendo la expresión de genes anti-apoptosis (7,8). Aunque es también enorme el interés con el que se estudia la acción de la NPD1 en los procesos neurodegenerativos, como el Alzheimer, en los que se evidencia un freno importante en la evolución de los mismos cuando se comienza el tratamiento de forma precoz (9,10).

Son muchos los docosanoides que se han descubierto y aún continúan identificandose, y tienen algunas otras acciones interesantes, como interactuar con receptores de cannabinoides, lo que implica que muchos de los beneficios que aporta el DHA son debidos a las acciones de estos derivados (11). Todos los docosanoides comparten el hecho de actuar en cantidades muy pequeñas, en el rango de micro o nanogramos, mientras que la ingesta de DHA requiere de uno o más gramos diarios para mantener los niveles de los tejidos. Esto nos lleva a considerar algo importante, que es que el DHA se conserva en determinados tejidos para hacer que esos tejidos funcionen muy bien y no tengan problemas, por eso se conserva principalmente en el cerebro y la retina, dos tejidos muy importantes para nuestra supervivencia (2). El otro tejido importante donde se conserva el DHA es el reproductor, espermatozoides y óvulos lo necesitan y su carencia se relaciona con problemas de fertilidad (12).

El DHA es un producto con unas características especiales, diseñado para alcanzar la máxima absorción y biodisponibilidad. Para ello, se ha purificado el DHA a partir de aceite de pescado procedente de anchoa. Un pez pequeño, que ocupa un lugar basal en la cadena trófica marina, gracias a ello no acumula metales pesados, a diferencia de otros grandes depredadores como el atún. Además, es un pez que vive en corrientes marinas de agua fría y limpia que sólo encuentran lejos de la costa.

Se trata de un DHA que se ha esterificado enzimáticamente en un triglicérido, porque nuestro sistema digestivo lo procesa mejor y así se maximiza su absorción.

El producto DHA, contiene una cantidad de EPA residual muy reducida, inferior al 5%, lo cual también es importante para asegurar la máxima biodisponibilidad del DHA, porque EPA compite por la absorción y biodisponibilidad con el DHA (2).

Además, la alta concentración del DHA permite alcanzar los 1000 mg de DHA en cada cápsula. Esta cantidad nos permite alcanzar un grado de suplementación excelente con tan sólo ingerir una cápsula diaria. Aunque dependiendo de las necesidades y bajo consejo de un profesional, se puede aumentar la ingesta diaria hasta cuatro cápsulas o más.

REFERENCIAS:

1.- Bazán, N.G., y cols. (2011) Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases. Annu Rev Nutr. Aug 21;31:321-51.

2.- Arterburn, L.M., y cols. (2006) Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am J Clin Nutr. Jun;83(6 Suppl):1467S-1476S.

3.- Kuipers, R.S., (2012) Gestational age dependent changes of the fetal brain, liver and adipose tissue fatty acid compositions in a population with high fish intakes. Prostaglandins Leukot Essent Fatty Acids. Apr;86(4-5):189-99.

4.- Crawford M. (2000) Placental delivery of arachidonic and docosahexaenoic acids: implications for the lipid nutrition of preterm infants. Am J Clin Nutr. Jan;71(1 Suppl):275S-84S.

5.- Levy, B.D. (2012) Resolvin D1 and Resolvin E1 Promote the Resolution of Allergic Airway Inflammation via Shared and Distinct Molecular Counter-Regulatory Pathways. Front Immunol. Dec 28; Vol3: Art. 390.

6.- Mukherjee, P.K. y cols. (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA. Jun 1;101(22):8491-6.

7.- Eady, T.N., y cols., (2012) Docosahexaenoic acid signaling modulates cell survival in experimental ischemic stroke penumbra and initiates long-term repair in young and aged rats. PLoS One.;7(10).

8.- Bazan, N.G., (2009) Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer’s disease. J Lipid Res. Apr;50 Suppl:S400-5.

9.- Yurko-Mauro, K., y cols. (2015) Docosahexaenoic acid and adult memory: a systematic review and meta-analysis. PLoS One. Mar 18;10(3)

10.- Lukiw, W.J., y cols. (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest. Oct;115(10):2774-83.

11.- Yang, R., y cols. (2011) Decoding functional metabolomics with docosahexaenoyl ethanolamide (DHEA) identifies novel bioactive signals. J Biol Chem. Sep 9;286(36):31532-41.

12.- Oborna, I., y cols., (2010) Increased lipid peroxidation and abnormal fatty acid profiles in seminal and blood plasma of normozoospermic males from infertile couples. Hum Reprod. Feb;25(2):308-16.

css.php